
PDL over Accelerated Labeled Transition Systems

Taolue Chen
CWI

PO Box 94079
1090 GB Amsterdam, NL

chen@cwi.nl

Jaco van de Pol
University of Twente

PO Box 217
7500 AE Enschede, NL

vdpol@cs.utwente.nl

Yanjing Wang
CWI

PO Box 94079
1090 GB Amsterdam, NL

y.wang@cwi.nl

Abstract

We present a thorough study of Propositional Dynamic
Logic over a variation of labeled transition systems, called
accelerated labelled transition systems, which are transi-
tion systems labeled with regular expressions over action
labels. We study the model checking and satisfiability de-
cision problems. Through a notion of regular expression
rewriting, we reduce these two problems to the correspond-
ing ones of PDL in the traditional semantics (w.r.t. LTS).
As for the complexity, both of problems are proved to be
EXPSPACE-complete. Moreover, the program complexity
of model checking problem turns out to be NLOGSPACE-
complete. Furthermore, we provide an axiomatization for
PDL which involves Kleene Algebra as an Oracle. The
soundness and completeness are shown.

1 Introduction

Automatic verification techniques, such as model check-
ing [4], normally require the exploration of a labeled transi-
tion system (LTS) corresponding to a formal specification.
These techniques are quite limited by the size of the state
space, which may be too large or even infinite. Abstrac-
tion is being widely used to reduce the complexity of the
analyzed systems.

We express system properties in Propositional Dynamic
Logic (PDL[5]). This was introduced by Fischer and Land-
ner in the late 70s as a formalism for reasoning on programs.
Its main operators state that some property holds after all or
some executions matching a given regular expression.

In order to preserve universal and existential properties
one typically uses three-valued logic [1] on modal labeled
transition systems (MLTS) [14, 6]. Universal properties
(safety) are checked on an overapproximation (may tran-
sitions), while existential properties (liveness) are checked
on an underapproximation (must transitions). This works
fine for safety properties, but the verification of liveness

properties is problematic. The problem comes from the
lack of guaranteed (required) behaviors, due to the non-
determinism introduced by abstraction.

Accelerated Labeled Transition Systems. To deal with
this problem, Valero Espada and the second author pro-
posed accelerated modal LTS (AMLTS), a new formal-
ism to represent abstractions [16]. They enhance Modal-
LTSs by labeling must-transitions with sequences of ac-
tions. These so-called accelerated transitions capture the
idea that a state can be reached from another state by some
finite computation. In the current paper, we study acceler-
ated transitions only, and talk about Accelerated Labelled
Transition Systems (ALTS).

This extension captures abstract systems more accurately
and therefore infers stronger liveness properties. As an
example, abstracting a count-down process could involve
states zero and pos. There would be may-transitions from
pos to pos and to zero (both labeled by a dec-action), but
no must-transitions at all. However, one could introduce
an accelerated must-transition from pos to zero (labeled by
dec+).

Main contributions. Usually, PDL is interpreted over an
LTS, but in [16] PDL is interpreted over an ALTS. We will
see that this makes a big difference. Developing a model
checking algorithm is of utmost importance. Moreover, for
an in-depth understanding of the logic, axiomatization and
satisfiability checking are two central questions. We explore
all of these problems.

A model checking algorithm should check whether a
PDL formula holds for an ALTS. In [16], an algorithm with
high complexity is provided, showing decidability of the
model checking problem. It is quite different from the usual
PDL model checking algorithm (see, e.g. [11]). A hard
problem left open in [16] is the precise complexity and op-
timality of the algorithm.

In Section 3, we provide a model checking algorithm for
PDL on ALTS, by exploiting the notion of regular expres-
sion rewriting studied extensively in [3]. The complexity
can be easily analyzed, namely, in EXPSPACE. Further-

2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3249-3/08 $25.00 © 2008 IEEE

DOI 10.1109/TASE.2008.42

193

more, we prove an EXPSPACE lower bound for the model
checking problem. This result solves an open problem left
in [16] and establishes a strong link between model check-
ing PDL over ALTS and regular expression rewriting. In
Section 4, we provide an axiomatization of PDL on ALTS,
which employs Kleene Algebra [10] as an oracle. The
soundness and completeness are shown. This result shows
very clearly the differences with traditional PDL on LTS.
Furthermore, in Section 5, we study the satisfiability de-
cision problem. By, again, resorting to the notion of reg-
ular expression rewriting [3], we reduce this problem to
the satisfiability of PDL in the traditional semantics (over
LTS) and show that satisfiability of PDL over ALTS is also
EXPSPACE-complete.

Related work. We mention some related work: finite-state
automata that allow more complex transition labels recently
received a resurgence of attention. These include gener-
alized automata [7] (a.k.a. string or lazy automata) with
strings (or blocks) as transition labels rather than merely
characters or the null string and expression automata [9],
finite-state automata whose transition labels are regular ex-
pressions over the input alphabet. These share the same
idea as our accelerated LTS. However, they mainly studied
these extended automata from the automata and language
perspectives, in particular, the determinism and minimiza-
tion problems are explored there. In logic, [15] studies µ-
calculus with regular expressions in the modalities. It is
shown that in this case, regular expressions in formulae can
be easily eliminated by the fixpoint construction. [13] intro-
duces the notion of regular linear temporal logic, which is
a logic that generalizes linear temporal logic with the abil-
ity to use regular expressions arbitrarily as sub-expressions.
The expressiveness and satisfiability of this logic are inves-
tigated there. These works are orthogonal to regular expres-
sions in the LTS, which is the main focus of the current
paper.

2 Preliminaries

2.1 Accelerated Labelled Transition Systems

Given an alphabet Σ, regular expressions over Σ are of
the form

α ::= a | α+ α | α · α | α∗

where a ∈ Σ. We write Σ∗ as the set of words over Σ.
The interpretation of regular expression α, namely, the

regular language of α, is denoted by L(α):

L(a) = {a}
L(α1 + α2) = L(α1) ∪ L(α2)
L(α∗) = L(α)∗

L(α1 · α2) = {w1 · w2 | w1 ∈ L(α1), w2 ∈ L(α2)}

Definition 1 [Accelerated Labelled Transition System] An
Accelerated Labelled Transition System (ALTS) is a tuple
M = (S,Act,→, V) where

• S is a non-empty set of states;

• Act is a non-empty set of atomic action labels;

• → is a possibly infinite set of accelerated transitions of
the form s

σ→ s′ with s, s′ ∈ S, and σ being a regular
expression over alphabet Act.

• V is the valuation function: V : S → 2Φ where Φ is a
set of atomic propositions.

Following the tradition in modal logic, we shall callF =
(S,Act,→) an ALTS frame.

A Labeled Transition System (LTS) is an ALTS with the
constraint that every transition is labeled by a single atomic
action.

2.2 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) is a branching-time
logic, in the style of Hennessy-Milner Logic with regular
expressions:

ϕ ::= � | p | ϕ ∧ ϕ | ¬ϕ | 〈α〉ϕ

where, p is an atomic proposition and α is a regular expres-
sion over some alphabet Σ. When Σ is not fixed, we use
PDLΣ to denote the PDL language based on Σ.

As usual, we define ⊥, φ ∨ ψ, φ → ψ and [β]φ as the
abbreviations of ¬�, ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ and ¬〈β〉¬φ
respectively.

As the semantics, 〈α〉ϕ holds in a state in which there
exists at least one α sequence to a state satisfying ϕ while
[α]ϕ holds in a state in which all continuations by sequences
matching α end in a state satisfying ϕ. We define the sat-
isfiability relation � between a pointed model M, s and a
PDL formula ϕ as follows:

M, s � � ⇐⇒ always
M, s � p ⇐⇒ s ∈ V (p)
M, s � ¬φ ⇐⇒ M, s � φ
M, s � φ ∧ ψ ⇐⇒ M, s � φ andM, s � ψ
M, s � 〈β〉φ ⇐⇒ there exists a path

s = s0
σ1−→ s1

σ2−→ · · · σn−→ sn

inM such thatM, sn � φ and
L(σ1σ1 . . . σn) ⊆ L(β)

To illustrate the semantics, we present two simple exam-
ples:

194

Example 1

s
a+b �� •

M, s � 〈a+ b〉�
M, s � 〈a〉�

t
a ��
b

�� •
M, t � 〈a+ b〉�
M, t � 〈a〉�, 〈b〉�

Recall that for the standard PDL semantics on LTS
(called G) with action set Act, the satisfiability relation �
for modality cases are defined as:

• G, s � 〈β〉φ ⇐⇒ ∃ path s0
e0−→ s1

e1−→ · · · en−1−→
sn inM such that e1 . . . en ∈ L(β) andM, sn � φ.

• [β]φ is dual to 〈β〉φ.

2.3 Regular Expression Rewriting

The notion of regular expression rewriting is introduced
in [3], and turns out to play an essential role in solving
model checking and satisfiability checking problems. The
following exposition is taken from [3].

Given a regular expression β and a finite set E =
{α1, . . . , αk} of regular expressions over an alphabet Σ,
re-express, if possible, β by a suitable combination of
α1, . . . , αk. We assume that associated with E we always
have an alphabet ΣE containing exactly one unique symbol
eα for each α in E , and we use re(e) to denote the regular
expression associated with the symbol e ∈ ΣE . Given any
language L over ΣE , we denote by expΣ(L) the expansion
of L w.r.t. E , i.e., the language over Σ defined as follows

expΣ(L) =
⋃

e1···en∈L

{w1 · · ·wn | wi ∈ L(re(ei))}

where L(α) is the language defined by the regular expres-
sion α. Thus, expΣ(L) denotes all the words obtained from
a word e1, · · · en ∈ L by substituting for each ei all words
of the regular languages associated with ei. Given a ΣE -
word w, expΣ({w}) is simply called the expansion of w.

Definition 2 Let α be a regular expression over the alpha-
bet ΣE = {e0, e1, . . . en}. We say α is a rewriting of β (a
regular expression over Σ) w.r.t E if expΣ(L(α)) ⊆ L(β).
α is called a ΣE−maximal rewriting if for any other rewrit-
ing α′ of β w.r.t. ΣE : L(α′) ⊆ L(α) (thus expΣ(α′) ⊆
expΣ(α)). We say that a rewriting α is empty if L(α) = ∅.

In [3], the problem of finding a maximal rewriting is
shown to be EXPSPACE-complete.

3 Model Checking

In this section, we tackle the model checking problem.
At the first sight, one might think this is a very simple prob-
lem: an immediate idea might be first to transform an ALTS

into LTS by expanding, then run traditional model checking
algorithm. However, this does not work, at least not in a
naive way. Let us look at Example 1, left figure. Suppose
one wants to check 〈a〉� which is false and following this
idea, one can obtain a LTS in the right figure. However, the
result will be true. The other naive idea is to “merge” the
transitions in the ALTS such that for any two states, there
is only one accelerated transition between them. This does
not work well either: Suppose the considered ALTS is Ex-
ample 1, right figure, and one wants to check 〈a〉�, which
is true. However, after the transformation, the left figure is
obtained and the result would be false. These two examples
suggest that the model checking can not be performed in a
very simple way.

3.1 Algorithm

We now present the correct algorithm, where the idea is
to reduce the model checking problem of PDL over ALTS to
the one over LTS in a more sophisticated manner. Here, as
said, the notion of regular expression rewriting is exploited.

Notation. Given a set of regular expressions
{β, α1, . . . αn} ⊆ Σ∗, let E = {α1, . . . , αn}, β̂E be
the maximal ΣE−rewriting of β. Note that β̂E is a regular
expression over ΣE = {eα | α ∈ E} and can be computed
by an algorithm in [3].

Definition 3 Given an ALTSM = (S,Act,→, V), let

〈〉M = {σ | σ ∈ Act∗ and σ appears in some transition ofM}
We define �M� as (S, {eα | α ∈ 〈〉M},→′, V) where

s
eα→′ s′ iff s

α→ s′.

Definition 4 [Rewriting w.r.t an ALTS] Given a ALTSM
and a PDL formula φ, RM(φ) is the rewriting of φ in lan-
guage PDLΣ〈〉M

defined by: 1

• RM(p) = p where p an atomic proposition;

• RM(¬ψ) = ¬RM(ψ);

• RM(ψ1 ∧ ψ2) = RM(ψ1) ∧RM(ψ2);

• RM(〈α〉(ψ)) = 〈α̂〈〉M〉RM(ψ).

Theorem 1 For any pointed ALTSM, s and any PDL for-
mula φ,

M, s � φ ⇐⇒ �M�, s � RM(φ).
1Since rewriting might introduce ε (the language only containing empty

word) and δ (empty language), for technical convenience, we add ε and δ
into the language of PDL programs when traditional PDL semantics is
concerned. It is not hard to see they are auxiliary and can be eliminated in
the standard semantics of PDL since [ε]φ↔ φ and [δ]φ are valid.

195

s a

p

ac∗b
c

ac∗b

Figure 1. Accelerated LTS

Proof: By induction on the structure of φ. The only inter-
esting case is φ = 〈α〉ψ.

⇒) Suppose M, s � 〈α〉ψ then there exists some t in
M such that s

σ1→ · · · σn→ t in M and L(σ1 · · ·σn) ⊆
L(α). Since α̂〈〉M is the maximal Σ〈〉M rewriting of φ and
{σ1, . . . , σn} ⊆ 〈〉M, L(eσ1 · · · eσn

) ⊆ L(α̂〈〉M). It fol-
lows that eσ1 · · · eσn

∈ L(α̂〈〉M). By induction hypothesis,
�M�, t � RM(ψ) and thus �M�, s � 〈α̂〈〉M〉RM(ψ).
Namely �M�, s � RM(φ).

⇐) Suppose �M�, s � 〈α̂〈〉M〉RM(ψ), then there exits

a path s
eσ1→ · · · eσn→ t in �M� such that eσ1 · · · eσn

∈
L(α̂〈〉M) with {σ1, . . . , σn} ⊆ 〈〉M. It follows that
expAct(eσ1 · · · eσn

) ⊆ expAct(α̂〈〉M), since α̂〈〉M is the

maximal rewriting. Namely s
σ1→ · · · σn→ t in M and

L(σ1 · · ·σn) ⊆ L(α). By induction hypothesis,M, t � ψ,
and thusM, s � φ. �

Theorem 1 allows us to use the standard PDL model
checking algorithm (e.g. [11]) to solve the problem over
ALTS in a straightforward manner. We present an ex-
ample here. Let us consider the ALTS M depicted in
Fig. 1. Suppose we need to check whether the formula
φ = 〈a · (b · a+ c∗)〉p holds at state s. Then we first collect
the set 〈〉M = {a, a·c∗ ·b, c}; then we compute the maximal
rewriting of a ·(b ·a+c∗) w.r.t 〈〉M, following the algorithm
in [3]. It follows easily that RM(φ) = 〈e∗a·c∗·b · ea · e∗c〉p.
According to Theorem 1, we only need to check whether
�M�, s � RM(φ), where �M� is the same graph as in
Fig. 1 except that the labels become ea·c∗·b, ea, ec in an ob-
vious way. A standard PDL model checking algorithm will
return TRUE and thus we can conclude thatM, s � φ.

3.2 Complexity Analysis

Upper Bounds. We have shown that model checking
PDL on ALTS can be reduced to model checking PDL on
LTS plus the rewriting part. So the problem is in P time
with an EXPSPACE-bounded oracle. So the complexity is
PEXPSPACE, which is EXPSPACE.

One might think the complexity is a bit scaring for prac-
tice. However, Lichtenstein and Pnueli argued that when
analyzing the complexity of model checking, a distinction
should be made between complexity in the size of the input
structure and complexity in the size of the input formula.
And it is often the complexity in size of the structure that is

typically the computational bottleneck [12]. In a nutshell,
program complexity refers to the complexity of the problem
in terms of the size of the input module, assuming the for-
mula is fixed. Clearly, in our case, the program complexity
turns out to be LOGSPACE. This is important for practice
since people might argue that the complexity of our algo-
rithm is too high to be practical. However, in practice, usu-
ally the logic formula is small and in this case the algorithm
still performs very well.

Lower Bound. We show that the upper bound established
in previous section is essentially optimal. We shall exploit
the regular expression rewriting problem (see Section 2.3)
to prove the EXPSPACE lower bound of the problem of
model checking ALTS w.r.t. a PDL formula. First, we have:

Theorem 2 ([3]) The problem of verifying the existence of
a nonempty rewriting of a regular expression β w.r.t. a set
E of regular expressions is EXPSPACE-complete.

We present a reduction as follows:

Lemma 1 Given a set of non-empty regular expressions
E = {α1, · · · , αk} and a regular expression β, there exists
a pointed ALTS model ME , s and a PDL formula ϕ such
that:

ME , s � ϕ ⇐⇒ there is a non-empty rewriting of β w.r.t. E .

Proof: Given E = {α1, · · · , αk} and β, we define the
ALTS ME as ({s}, E ,→, V) where →= {(s, e, s) | e ∈
E}, V is an arbitrary valuation. Let ϕ = 〈β〉�.

⇒) Suppose ME , s � 〈β〉�. According to the definition,

there is a path in ME with s
e′
1−→ s · · · e′

m−→ s where
{e′1, · · · , e′m} ⊆ E and L(e′1 · · · e′m) ⊆ L(β). It follows
that e′1 · · · e′m is a non-empty rewriting of β w.r.t. E .
⇐) Suppose there is a nonempty rewriting β′ of β w.r.t.
E . Since β is non-empty, there is a possibly empty word
e′1 · · · e′m ∈ L(β′) where for each 1 ≤ i ≤ m, e′i ∈ E .
It is easy to see that expΣ(e′1 · · · e′m) ⊆ expΣ(L(β′)).
Furthermore, according to the definition of the rewriting,
expΣ(L(β′)) ⊆ L(β) and thus expΣ(e′1 · · · e′m) ⊆ L(β).

Since there exists a path in ME with s
e′
1−→ s · · · e′

m−→ s,
ME , s � 〈β〉�. This completes the proof. �

Theorem 1, Theorem 2 and Lemma 1 yield the main re-
sult of current section, as follows:

Theorem 3 The problem of model checking a PDL for-
mula w.r.t. an ALTS is EXPSPACE-complete.

196

4 Axiomatization

In this section, we give a logical characterization of our
semantics. Although the syntax of PDL does not change,
the interpretation over ALTS results in a new semantics
which differs from standard PDL considerably. For in-
stance, the following axioms are valid in standard PDL.
However, most of them do not hold anymore (in the right
column, ←, if appears, denotes that the ↔ connective
should be replaced by← to keep the formula valid2).

Axioms In our semantics
[α](φ→ ψ)→ ([α]φ→ [α]ψ) valid
〈α1 · α2〉φ↔ 〈α1〉〈α2〉φ ←
〈α1 + α2〉φ↔ 〈α1〉φ ∨ 〈α2〉φ ←
〈α∗〉φ↔ (φ ∨ 〈α〉〈α∗〉φ) ←
[α∗](φ→ [α]φ)→ (φ→ [α∗]φ) invalid

In view of this, instead of the standard PDL axioms we
propose the following new conditional axiomatization.

Definition 5 A deductive system AS

TAUTOLOGY all the tautologies
K [α](p→ q)→ ([α]p→ [α]q)
SEQ [α1 · α2]p→ [α1][α2]p
* [α∗]p→ p
Rules

�
p

[α]p

SUB
φ(p)
φ(ψ)

MP
φ, φ→ ψ

ψ

INCL
�KA α+ α′ = α′

[α′]p→ [α]p

where KA is a complete Kleene algebra, for example as in
[10], in acting as an oracle.

The rest of this section is devoted to showing that AS is
sound and complete w.r.t to the class of all ALTS frames.
First let us consider a special class of ALTS frames on
which we can use an equivalent simple semantics for tech-
nical convenience. An ALTS frame is called normal if it
satisfies the following properties:

• sequentiality: For any σ, σ′ ∈ Act∗ : σ→ · σ′
→⊆σ·σ′
−→;

• *-reflexivity: For any σ ∈ Act∗ : if {ε} ∈ L(σ) then
s

σ−→ s for any s ∈ S;

• regularity: For any σ, σ′ ∈ Act∗: L(σ) ⊆ L(σ′) im-

plies that
σ→⊆σ′
→.

2Note that, the last induction axiom of PDL is not valid anymore, it
makes the completeness proof easier than usual PDL.

Models based on the normal ALTS frames are called normal
ALTS models. Now we can define an equivalent semantics
�0 on the normal ALTS models as follows:

• For boolean cases: as before;

• For modal case:
M, s �0 〈β〉φ ⇐⇒ ∃t : s

β−→ t and t �0 φ.

We can saturate an arbitrary ALTS frame of PDLΣ: F =
(S,Act,→) into a normal frame R(F) = (S,Act,→r) by
adding transitions:

s
β−→r t ⇐⇒ ∃s σ1−→ s1

σ1−→ · · · σn−→ sn and
L(σ1σ2 . . . σn) ⊆ L(β)

R(M) is the saturated model which keeps the valuation the
same but saturates the frame ofM. It is easy to see that �0

coincides with � on normal models:

Proposition 1 Given an ALTS M = (S,Act,→, V), for
any PDL formula φ:

M, s � φ ⇐⇒ R(M), s �0 φ ⇐⇒ R(M), s � φ

Since all the normal ALTS frames are ALTS frames and
all the ALTS frames can be saturated into normal ALTS
frames, it follows from the above proposition that ∆ �
φ ⇐⇒ ∆ �0 φ, where ∆ is a set of PDL formulas.

It is easy to check the following lemma:

Lemma 2 For any normal ALTS frame F and any two
regular expressions σ and σ′, if �KA σ + σ′ = σ′ then
�0 [σ′]p→ [σ]p.

Lemma 3 For any ALTS frame F : F satisfies sequential-
ity ⇐⇒ F �0 SEQ.

Lemma 4 For any ALTS frame F : F satisfies *-
reflexivity implies F �0 *.

From above lemma, and the completeness of Kleene Alge-
bra [10], it is straightforward to establish:

Theorem 4 [Soundness] AS is sound for normal ALTS
frames.

Note that the * axiom does not correspond to ∗-
reflexivity by itself, but in presence of the other two proper-
ties3:

Lemma 5 If an ALTS frame F satisfies regularity, sequen-
tiality and F �0* then F is normal.

3That is why we don’t include a rule like:
[α]φ

φ
if ε ∈ L(α).

197

Proof: Suppose F satisfies regularity and sequentiality, we
only need to show F satisfies *-reflexivity: for any regular
expression σ appearing in PDL, if ε ∈ L(σ) then

σ−→ is
reflexive. We prove this by induction on the structure of σ.

• If σ = σ′∗ then it is straightforward to check that
σ−→

is reflexive since F �0 ∗.
• If σ = σ1 + σ2 then ε ∈ L(σ1) or ε ∈ L(σ2). By in-

duction hypothesis
σ1−→ is reflexive or

σ2−→ is reflexive.
From regularity,

σ1−→⊆ σ−→ and
σ2−→⊆ σ−→ . So

σ−→ is
reflexive.

• If σ = α · σ2 then ε ∈ L(σ1) and ε ∈ L(σ2). By
induction hypothesis

σ1−→ and
σ2−→ are reflexive. From

sequentiality,
σ1·σ2−→⊆ σ−→. So

σ−→ is reflexive. �

Completeness follows from the standard canonical
model construction.

Theorem 5 [Completeness] For any set of PDL formulas
∆ ∪ {φ}: ∆ �0 φ =⇒ ∆ �AS φ. Namely AS is strongly
complete for normal ALTS frames w.r.t �0. Thus AS is
strongly complete for all ALTS frames.

Proof: Note that AS induces a normal logic4. Therefore
it is strongly complete with respect to its canonical model
Mc = (Sc,Σ∗,−→c, V c) according to canonical model
theorem5. We only need to show that the canonical model
Mc is indeed a model based on normal ALTS frame. Since
Sc is the set of AS-maximal consistent sets, Mc �0 *
∧SEQ. From Lemma 3 and 5, we only need to show the
canonical model satisfies regularity:

For any σ, σ′ ∈ Σ∗,

L(σ) ⊆ L(σ′) implies
σ

−→c⊆
σ′

−→c .

Suppose there are regular expressions σ, σ′ such that

L(σ) ⊆ L(σ′) and ∃s, t : s
σ−→c t in the canonical model.

From the definition of
σ−→c, we have for all ψ : ψ ∈ t ⇒

〈σ〉ψ ∈ s. Since s is a maximal consistent set, then from
INCL we have for all ψ : 〈σ〉ψ → 〈σ′〉ψ ∈ s. Therefore
by applying MP rule we have for all ψ ∈ t : 〈σ′〉ψ ∈ s. It

follows, by definition, that s
σ′

−→c t. �

Strong completeness implies the compactness:

Corollary 1 [Compactness] PDL w.r.t ALTS is model
compact. Namely if all the finite subsets of Γ are satisfi-
able then Γ is satisfiable.

4A logic theory is normal if it contains all the instances of tautologies,
K axiom and closed under MP, SUB and �.

5Sc is the set of all AS−maximal consistent sets, w
σ−→ v if for all ψ,

ψ ∈ v ⇒ 〈σ〉ψ ∈ w, V c = {s ∈ Sc | p ∈ s}. Readers are referred to
the textbook [2] for more details about canonical model theorem.

Remark 1 Recall that standard PDL is not model compact:
considering the set Γ = {〈a∗〉p,¬p,¬〈a〉p,¬〈a〉〈a〉p, · · · },
any finite subset of Γ is satisfiable, yet not the whole Γ.
However, Γ is satisfiable on a single pointed ALTS model
with a single reflexive a∗-transition.

5 Satisfiability

In this section, we turn to the satisfiability checking
problem. The basic idea is to reduce this problem to tra-
ditional PDL satisfiability checking. However, clearly this
can not be done in a straightforward way, since their seman-
tics do not coincide, as observed in previous section.

For technical reasons, let us consider the equivalent pos-
itive PDL+ language

ϕ ::= � | ⊥ | p | p | ϕ ∧ ϕ | ϕ ∨ ϕ | [α]ϕ | 〈α〉ϕ
where p and p (negation of p) are in a set lit of literals of
basic propositions and α ranges over programs as in PDL.
It is a standard exercise to transform a PDL formula to an
equivalent PDL+ formula and vice versa.

Given a PDL+ formula φ, let 〈〉φ be the set {α |
α appears in φ in form of 〈α〉}. We now prove that if a for-
mula is satisfiable then it is satisfiable in a certain class of
models.

Proposition 2 Given a PDL+ formula φ, φ is satisfiable
⇐⇒ φ is satisfiable in a model that only contains α-
transitions for α ∈ 〈〉φ.

Proof: ⇐ is straightforward. We now prove⇒:
Suppose φ is satisfiable then there is an ALTS modelM =
(S,Act,→, V) such that ∃s ∈ S :M, s � φ. From propo-
sition 1,R(M), s � φ. Based onR(M) we build the model
M′ = {S,Act′,→′, V } where:

Act′ = 〈〉φ and s
α

−→′ t inM′ ⇐⇒ s
α−→r t in R(M).

Namely we cut off all the transitions in R(M) but the ones
labelled by some α ∈ 〈〉φ. We claim: M′, s � φ. We do
induction on the structure of φ :

• For atomic and boolean cases, trivial.

• φ = 〈α〉ψ : since R(M), s � φ then ∃t ∈ S such that

R(M), t � ψ and s
α−→r t. By definition s

α

−→′ t. By
induction hypothesis,M′, t � ψ thusM′, s � φ.

• φ = [β]ψ : since R(M), s � φ then for all t such

that s
β−→r t, R(M), t � ψ. By induction hypothesis,

M′, t � ψ. Note that if there exists t such that s
α′

1−→′

· · ·
α′

n−→′ t in M′, and L(α′
1 · · · · · α′

n) ⊆ L(β) then

s
β−→r t in R(M). Therefore for all β−reachable

states t in S,M′, t � ψ. It meansM′, s � φ. �

198

Given a PDL+ formula φ, we define a rewriting of φ,
which substitutes every instance of β in [β]ψ by its max-
imal Σ〈〉φ

-rewriting β̂〈〉φ
. Recall that, according to regu-

lar rewriting, β̂〈〉φ
is regular expression over the alphabet

Σ〈〉φ
= {eα | α ∈ 〈〉φ} where each eα is a new action

name.

Definition 6 [Rewriting] Given a PDL+ formula φ, R(φ)
is the rewriting of φ in language PDL+

Σ〈〉φ
defined by:

• R(p) = p where p ∈ lit ∪ {�,⊥}.
• R(ψ1 ∧ ψ2) = R(ψ1) ∧R(ψ2).

• R(ψ1 ∨ ψ2) = R(ψ1) ∨R(ψ2).

• R(〈α〉(ψ)) = 〈eα〉R(ψ).

• R([β]ψ) = [β̂〈〉φ
]R(ψ).

Proposition 3 Given a PDL+ formula φ, φ is satisfiable
⇐⇒ R(φ) is satisfiable w.r.t. standard PDL semantics.

Proof: ⇒) Suppose φ is satisfiable, then from proposition
2, we know that φ is satisfiable in an ALTS modelM that
only contains α-transitions for α ∈ 〈〉φ. Note that we can
also treatM as an LTS over the action set Σ〈〉φ

, which we
denote by G. Namely, G is the same asM except that the
transition is renamed. We now show G, s � R(φ) by induc-
tion on the structures of R(φ):

• For atomic and boolean cases, trivial.

• R(φ) = 〈eα〉R(ψ), where α ∈ 〈〉φ. SinceM, s � φ,
there exists some s

α→ s′ with M, s′ |= ψ. Accord-
ing to our construction, in G, s

eα→ s′. By induction
hypothesis, G, s′ � R(ψ) in G. It follows from the
semantics of traditional PDL that G, s � R(φ).

• For R(φ) = [β̂〈〉φ
]R(ψ) : Since M, s |= φ, for

any sequence of transitions s
α1→ · · · αn→ s′ with

n ≥ 0, L(α1 · · ·αn) ⊆ L(β) implies M, s′ |=
ψ. Now let us consider any sequence of transitions

s
eα′

1→ · · · eα′
m→ sm with eα′

1
· · · eα′

m
∈ L(β̂〈〉φ

)
in G. Note that eα′

1
, · · · , eα′

m
are single actions,

hence L(eα′
1
· · · eα′

m
) ⊆ L(β̂〈〉φ

). Since β̂〈〉φ
is a

〈〉φ−rewriting of β, L(α′
1 · · ·α′

m) ⊆ L(β). There-
foreM, sm |= ψ. By induction hypothesis, G, sm �
R(ψ). It follows that G, s � φ.

⇐) Suppose R(φ) is satisfiable, there is a pointed LTS G, s
over action set Σ〈〉φ

such that G, s � R(φ). Clearly, we can
construct a corresponding ALTS M which is the same as
G except that for any transition eα ∈ Σ〈〉φ

in G, we take
the transition α ∈ 〈〉φ inM. We now showM, s � φ by
induction on the structures of φ:

• For atomic and boolean cases, trivial.

• φ = 〈α〉ψ, where α ∈ 〈〉φ. Since G, s � R(φ), namely
G, s � 〈eα〉R(ψ), there exists some s

eα→ s′ in G with
s′ � R(ψ). According to our construction, s

α→ s′ in
M. By induction hypothesis, M, s′ |= ψ. It follows
from our semantics thatM, s � φ.

• φ = [β]ψ : Since G, s � R(φ), namely G, s �
[β̂〈〉φ

]R(ψ), s
eα1−→ · · · eαm−→ s′ and eα1 · · · eαm

∈
L(β̂〈〉φ

) implies G, s′ � R(ψ). Take arbitrary t such

that s
α′

1−→ · · · α′
n−→ t in M and L(α′

1 · · ·α′
n) ⊆

L(β). Since β̂〈〉φ
is the maximal Σ〈〉φ

−rewriting of

β, L(eα′
1
· · · eα′

n
) ⊆ L(β̂〈〉φ

). Since eα′
1
, . . . , eα′

n
are

atomic, eα′
1
· · · eα′

n
∈ L(β̂〈〉φ

). Hence G, t � R(ψ).
By induction hypothesis, M, t � ψ. Therefore
M, s � φ. �

Remark 2 This result is somewhat surprising. Note that
our semantics and traditional PDL semantics differs as
shown in the previous section. However, they coincide after
the rewriting. For example, φ = 〈a · b〉p ∧ [a][b]¬p is satis-
fiable w.r.t our semantics, but not in traditional PDL while
R(φ) = 〈ea·b〉p ∧ [δ][δ]¬p is satisfiable in traditional PDL
semantics.

From proposition 3, we managed to reduce satisfiability
checking of PDL over ALTS to traditional PDL satisfiability
checking, which has been extensively studied in literature,
see e.g. [8], and is EXPTIME-complete. Note the regular
expression rewriting can be done in EXPSPACE. These en-
tail that the satisfiability checking of PDL over ALTS can
be done in EXPSPACE. Now we prove the lower bound by
reducing regular expression rewriting problem to the satis-
fiability problem.

Lemma 6 Given a set of regular expressions E =
{α1, . . . , αk}, another regular expression β, which are over
an alphabet Σ, there exists a PDL−formula φE,β such that
φE,β is satisfiable ⇐⇒ there does not exist a non-empty
rewriting of β w.r.t E .

Proof: (Sketch) Given E = {α1, . . . , αk} and β, let

φE,β = [β]p∧[(α1+· · ·+αk)∗](¬p∧〈α1〉¬p∧· · ·∧〈αk〉¬p)
⇒) Suppose φE,β is satisfiable, then according to propo-
sition 2 there is a pointed ALTS M, s0 containing only
α1, · · · , αn ∈ E transitions such that M, s � φE,β . Since
M, s0 � [(α1 + · · ·+αk)∗](¬p∧ 〈α1〉¬p∧ · · · ∧ 〈αk〉¬p),
s0 |= ¬p ∧ 〈α1〉¬p ∧ · · · ∧ 〈αk〉¬p, and thus from s0,
for each αi, there must be some s0

αi→ si and accord-
ing to our semantics, si � ¬p ∧ 〈α1〉 ∧ · · · ∧ 〈αk〉¬p.
Repeat this process, it is not difficult to see that for each

199

σ0 · · ·σm ∈ L((α1 + · · · + αn)∗) where σi ∈ E ,M con-
tains a sequence of transitions s0

σ0→ s1
σ1→ · · · σm→ sm and

for any i ≤ m,M, si � ¬p.
Moreover, since s0 |= [β]p ∧ [(α1 + · · · + αk)∗](¬p ∧

〈α1〉¬p ∧ · · · ∧ 〈αk〉¬p), s0 |= [β]p ∧ ¬p and thus ε /∈
L(β). Hence ε can not be a rewriting of β. Furthermore,
since M, s � [β]p, it is easy to see that for any sequence
e ∈ L((eα1 + · · · + eαk

)∗), expΣ(L(e)) �⊆ L(β), because
otherwise, we can find a path inM such that this path leads
to a state where p holds, which is a contradiction. Hence
there is no non-empty rewriting of β w.r.t. E .
⇐) Suppose there is no non-empty rewriting of β w.r.t. E
then for all e ∈ L((eα1 + · · · + eαk

)∗) : expΣ(L(e)) �⊆
L(β). We can build a model M = {{s}, E ,→, V } where
→= {(s, α, s) | α ∈ E} and V (s) = {¬p}. It is clear that
M, s � φ. �

From the above lemma and theorem 2 we have:

Theorem 6 The satisfiability problem of PDL w.r.t. ALTS
is EXPSPACE-complete.

6 Conclusion and Future works

We have performed a thorough study of Propositional
Dynamic Logic over accelerated labelled transition sys-
tems. We mainly investigated three problems: model check-
ing, axiomatization and satisfiability checking. We show
that the model checking problem of this logic is EXPSPACE-
complete while the program complexity turns out to be
NLOGSPACE-complete. This answers an open question in
[16]; We also provide a sound and complete axiomatiza-
tion for PDL which involves Kleene Algebra as an Ora-
cle; Furthermore, we solve the satisfiability decision prob-
lem by a reduction to the satisfiability of PDL in the tradi-
tional semantics (w.r.t. LTS). The complexity is EXPSPACE-
complete as well.

There are a lot of avenues for future study. First, there
are a number of extensions of PDL (e.g. the test opera-
tor) and we are interested in what will happen if they meet
ALTS. Furthermore, in order to apply ALTS to abstract
model checking of liveness properties, as sketched in [16],
some open problems remain, for instance, how can an ab-
straction with accelerated transitions be computed automat-
ically? [16] hints at the relation with automated termination
provers. Our study shows that the model checking problem
with accelerated transitions is hard. So another interesting
question is how to add the minimal number of accelerated
transitions, in order to prove a certain liveness property.

Acknowledgement. The first author is partially supported
by the Dutch Bsik project BRICKS, the Chinese national
863 program (2007AA01Z178), NSFC (60736015) and

JSNSF (BK2006712); The third author is partially sup-
ported by the Dutch NWO project VEMPS (612.000.528).

References

[1] G. Bruns and P. Godefroid. Model checking partial state
spaces with 3-valued temporal logics. In Proc. CAV’99,
LNCS 1633, pp. 274-287, Springer, 1999.

[2] P. Blackburn, M. de Rijke and Y. Venema. Modal logic. Cam-
bridge University Press, 2002.

[3] D. Calvanese, G. De Giacomo, M. Lenzerini and M. Vardi.
Rewriting of regular expressions and regular path queries.
Journal of Computer and System Sciences, 64(3): 443-465,
2002.

[4] E. Clarke, Orna Grumberg and D. Peled. Model Checking,
MIT Press, 2000.

[5] M. Fischer and R. Ladner. Propositional dynamic logic of
regular programs, Journal of Computer and System Sciences,
18(2):194-211, 1979.

[6] P. Godefroid, M. Huth and R. Jagadeesan. Abstraction-based
model checking using modal transition systems. In Proc. of
CONCUR’01, LNCS 2154, pp. 426-440. Springer, 2001.

[7] D. Giammarresi and R. Montalbano. Deterministic general-
ized automata. Theoremtical Computer Science, 215: 191-
208, 1999.

[8] D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic, MIT
Press, Cambridge, MA, 2000.

[9] Y. Han and D. Wood. The generalization of generalized au-
tomata: expression automata. International Journal of Foun-
dations of Computer Science, 16(3): 499-510, 2005.

[10] D. Kozen. A completeness theorem for Kleene algebras and
the algebra of regular events. Jounral of Information and
Computation, 110(2):366-390, 1994.

[11] M. Lange. Model checking propositional dynamic logic with
all extras. Journal of Applied Logic, 4:39-49, 2006.

[12] O. Lichtenstein, and A. Pnueli. Checking that finite state con-
current programs satisfy their linear specification. In Proc.
POPL’85, pp. 97-107, ACM Press, 1985.

[13] M. Leucker, C. Sánchez. Regular linear temporal logic. In
Proc. ICTAC’07, LNCS 4711, pp. 291-305, Springer, 2007.

[14] K. Larsen and B. Thomsen. A modal process logic. In Proc.
of LICS’88, pp. 203-210, IEEE computer society, 1988.

[15] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-
checking for regular alternation-free mu-calculus. Science of
Computer Programming, 46(3):255-281, 2003.

[16] M. Valero Espada and J. van de Pol. Accelerated modal ab-
stractions of labelled transition systems. In Proc. AMAST’06,
LNCS 4019, pp. 338-352, Springer, 2006.

200

